A Requirement Ontology for Engineering
Design

Jinxin Lin, Mark S. Fox and Taner Bilgic

Enterprise Integration Laboratory, Dept. of Industrial Engineering
University of Toronto, Toronto, Canada M5S 3G9
tel: +1-416-978-6823; fax: +1-416-971-2479; email: {jlin, msf, taner}@ie.utoronto.ca

August 1, 1996

Abstract

We present an ontology for representing requirements that supports a generic requirements
management process in engineering design domain. The requirement ontology we propose
is a part of a more general ontology to capture engineering design knowledge. Objects
included in this general ontology are parts, features, requirements, and constraints. We
define a generic requirements management process and raise issues that any requirement
representation must address like communication, traceability, completeness, consistency,
document creation, and managing change. We use first-order logic to define the objects and
their attributes, and identify the axioms capturing the constraints and relationships among
the objects. We show how the axioms can be used in answering the issues raised.

Key words: requirement representation, ontology, design knowledge, collaborative design,
terminology and axioms.

1.0 Introduction

Requirements Management is one of the key elements that must be addressed by concurrent
engineering (CE) [11]. Yet the representation and management of requirements is problem-
atic in CE. Requirements are often ambiguous, incomplete and redundant in a CE environ-
ment. There is a lack of traceability of the requirements and insufficient decomposition of
requirements [12]. Requirements generated by different members in a concurrent engineer-
ing team may be contradictory since different authors may have different perspectives on the
system [16]. Authors of requirements use different terminology and hence the same term is
applied to different concepts and different terms are used to denoted the same entity.
Requirements are also changed frequently during the design process due to the changes of
technology and customer's objectives [6]. Documents have to be maintained about require-
ments detailing: (i) decisions made on the scope of the requirements, (ii) resolution of
ambiguous statements, and traceability links between requirements and the system specifi-
cation and owners and approvers. Requirements are usually constructed in accordance with
legislation and standards. We view the requirements management process one of creating,
communicating, maintaining, and verifying requirements as in [3], however we take a for-
mal approach in representing requirements.

Although requirements and requirements management are encountered in many different
facets of systems engineering (see e.g. [15] and the references therein), our focus in this
paper is the engineering design domain which requires the services and collaboration of
many engineers. We are developing a Knowledge Aided Design (KAD) system to address
many issues that arise in that particular setting [1][9][10]. A major issue in concurrent engi-
neering and collaborative design is the creation and maintenance of a suitable representation
for design knowledge that will be shared by many design engineers. This knowledge
includes many concepts such as component structure, features, parameters, constraints,
requirements, and more. In this paper, we concentrate on requirements and propose an
ontology that supports the requirement management process.

A Requirement Ontology for Engineering Design 2

In Section 2.0 and Section 3.0, we identify the issues raised by the requirements manage-
ment process and introduce a formal way of representing the underlying knowledge. We

also transcribe the issues raised as competency questions (Section 3.1). In Section 4.0, we
present the product ontology which complements the requirements ontology discussed in
detail in Section 5.0. In Section 5.5, constraints and deductive rules are discussed. These
notions, together with the ontology described in the earlier sections constitute tools for rea-
soning about requirements and hence addressing issues raised. In Section 6.0, we give some
example queries to show how the issues are tackled within our formalism. Section 7.0 con-
cludes the paper.

2.0 Motivation

In [6], Fox and Salustri present a model of systems engineering suitable for the design of
complex artifacts. The artifact is usually composed of many sub-systems which in turn com-
posed of other sub-systems or components. Customer requirements are decomposed into
requirements for the various sub-systems. Then design is proposed for each sub-system and
the relationships between customer requirements and the specifications of the sub-systems
derived. At the same time the analysis and testing of the systems are defined. Figure 1 shows
the V-model highlighting the decomposition and integration aspects of system design. The
left arm of the V shows the decomposition of requirements, and the decomposition of con-
cept, analysis and design driven by the decomposed requirements. The right arm shows the
bottom-up integration & testing of the subassemblies and final assembly. Concurrency in the
V-model is achieved in two waysertically, where lower levels on the left of the V are

begun before higher level designs are completedhanzontallywhere Assembly and Test

is performed for each level of design before or during the elaboration of lower levels.

FIGURE 1. V-Model of System Design

C A D R A+l AT

Hierarchical Design /'// / Integration and Test

C [pD [R |
c¥YalplR |
c 1l A lplRr |
clalp IR |
C: Concept c 1 aATnp TR I A+:Assembly & Integration
A: Analysis C | A | D |R | AT Acceptance Testing
D: Design M: Maintenance

R: Requirements

A Requirement Ontology for Engineering Design 3

The V-model for systems engineering management is complex. The degree of concurrency
combined with the levels of refinement and composition make it particularly difficult to
manage requirements.

The typical approach to defining requirements is rather informal at the start of the life cycle
and it is assumed that elaborations on the higher level requirements will make them more
precise. However, in the aerospace industry the requirements have been rigorously defined
right from the very beginning mainly due to the strict legislations imposed by the customers.
Furthermore, it is often the case that the business contracts are based on the requirements
documents and payment is conditioned on the demonstration of the artifact to meet the
requirements. Therefore, elicitation, elaboration, documentation, satisfaction, and traceabil-
ity of requirements are of utmost importance.

In light of this and the problems discussed at the beginning of the introduction, there is a
need for a representation of requirements for engineering design that:

» Provides an unambiguous and precise terminology such that each engineer can jointly
understand and use in describing requirements.

* Is generic, reusable and easy to extend.

» Allows traceability of the requirements, with dependencies and relationships among the
requirements captured and stored.

» Support the detection of redundant or conflicting requirements.
* Integrates requirements with parts, features, parameters and constraints.

» Facilitates document creation conforming to customer/company/government rules and
regulations.

» Facilitates the change management process.

3.0 Ontology

An Ontology is a formal description of objects and their properties, relationships, con-
straints, and behaviors. As in [4], we are interested in a formal and rigorous approach to the
representation of knowledge. Our approach is:

» To provide a terminology for design that can be shared by all the engineers involved. The
engineers use the same terminology so that they can work in the same design and achieve
high-level collaboration.

» To define the meaning of the terminology using first-order logic which gives a precise
and unambiguous semantics for each term. The precision and unambiguity avoid possible
conflicts and different interpretations by different engineers.

» To develop a set of axioms capturing definitions and constraints on the terminology to
enable automatic deduction from the design knowledge. The axioms allow our system to
answer design relevant questions using not only information explicitly represented in the

A Requirement Ontology for Engineering Design 4

object model, but also what can be deduced from it. The axioms also allow integrity
checking of the design knowledge, i.e. detecting invalid data in the database and avoiding
updates introducing conflicts among the data and the object model of design.

Terminology (objects) included in our ontology include parts, features, requirements, and
constraints. We identify axioms describing the constraints and relationships among the
objects. We characterize the design activity as a process of constructing the objects and axi-
oms in the ontology as well as evaluating the satisfaction of requirements and constraints by
the product structure and parameter values.

In the KAD system, we have implemented the ontology as Prolog axioms and developed a
WWW-based interface for engineers to pose queries to the ontology which will then be
answered by the system through reasoning about the axioms. We also designed a symbology
for depicting the objects of the ontology in a graphical context deployed in the engineering
interface.

3.1 Competency of the Ontology

We follow the methodology for the design and evaluation of ontologies as described in [8].
We first identify the problems in the domain that the ontology is trying to address. These
problems are given in the forms of questions which the ontology is intended to answer. This
group of questions is calledmpetencyf the ontology. The competency questions provide

a characterization and justification for our approach and enable people to understand the
scope and limitations of the approach. We have mentioned that we will develop a set of axi-
oms (microtheory) to capture definitions and constraints on the terminology in the ontology.
This microtheory must contain a necessary and sufficient set of axioms to represent and
solve these questions, thus providing a declarative semantics for the system.

The following are some categories of competency questions supported by our ontology. In
each category we list several typical questions.

* Requirement refinement:
1. Do the decomposed requirements preserve the meaning of the original requirements?

2. Are there redundant requirements generated during the requirement decomposition
process?

3. Is a requirement an explicit statement of the customer?

* Requirement traceability:
1. Does this requirement decompose to others?
2. What is the source of the requirement?
3. Who posted the requirement?
4. Does the requirement apply internally within a particular design team or externally?

* Requirement satisfaction:

A Requirement Ontology for Engineering Design 5

1. Is a requirement satisfiable?
2. Are two (or more) requirements conflicting each other?
3. Which requirements are satisfied and which are violated?

* \ersion & Change:
1. Is this the latest version of the requirement?
2. What are the older versions of this requirement?
3. Does a change affect consistency of the requirements set?

» Relationships of requirements to parts:
1. Does a requirement impose a constraint on the part?
2. What are the requirements of a part?
3. On which parameter is the constraint imposed?

* Product structure:
1. What are the components of a part?
2. What features does the part have?
3. What constraints that the part must satisfy?
4. What constraints that parameter-X of the part must satisfy?
5. Where a specific type (or class) of parts are used?

6. What are components of Assembly P that exceed a certain percentage of the total
mass?

4.0 Product Ontology

In this section we describe the portion of our product ontology used by our requirements
ontology. This ontology extends the product representation used in [5].

Following the object-oriented tradition, in our ontology each object is associated with a
unique name (which can be thought of as its ID). There are two types of otigsds:

(objects) andnstance(objects). A class is used for representing a generalized type or cate-
gory of object, and instance for a specific member of a class. Among many others, there are
classes callegart, feature, requiremengndconstraintwhich classify the design objects.

Each of these classes can be further divided into subclasses. We denote the subclass relation-
ship by the predicateubclassOf(.,.)For example, the following says thek partis a sub-

class of the class padubclassOf(eil_part, part)

An instance and a class are related by the predicethceOf(.,.)For example, the fol-
lowing says that a particular paiRT131js an instance of the clagg_part instanceOf(-
PRT131, eil_part)

A Requirement Ontology for Engineering Design 6

Throughout this paper, we denote variables by lower case letters and constants by upper
case letters. We uge f, r, c(with or without subscripts) to denote variables of the classes
part, feature, requirement, and constraint respectively.

4.1 Parts

A partis a component of the artifact being designed. The artifact itself is also viewed as a
part. The concept of part introduced here represents a physical identity of the artifact, soft-
ware components and services. Throughout the paper, for simplicity we use a small example
to illustrate the concepts from the ontologies we develop. Nevertheless, the concepts do
apply to more sophisticated engineering design domains. In this example, we assume that
we are designing a desk spot lamp.

The structure of a part is defined in terms of the hierarchy of its component parts. The rela-
tionship between a part and its components is captured by the predicgtenent_ofThe
component_ois similar to thesubcomponent-pthecomposed-ofand thepart-of relations
defined in [7], [13], and [5] respectively, except that the axioms are made explicitly.

Between two partg andp’, component_of(p, pfheans thab is a component (subpart) pf
For example, there are three components of a desk spot lamp, iégaely base,
Small_headndShort_arm

component_of(Heavy_base, Desk_spot_lamp).

component_of(Short_arm, Desk_spot_lamp).

component_of(Small_head, Desk_spot_lamp).

FIGURE 2. Components of Desk Spot Lamp

CDesk_spot_Ian

I9) CBase_coveD C Welght_dyc

The relationcomponent_ois transitive; that is, if a part is a component of another part that
is a component of a third part then the first part is a component of the third part.

A Requirement Ontology for Engineering Design 7

(O pq, po, p3) component_of(p py) L component_of(p ps) L component_of(p pa).

The following two axioms state that a part cannot be a component of itself, and it is never
the case that a part is a component of another part which in turn is a component of the first
part. This shows that the relatioamponent_of non-reflexive and anti-symmetric:

(O p) = component_of(p, p).
(O pq, pp) component_of @ py) U~ component_of(p py).

A part can be a (sub-)component of another part. But since each part has a unique ID (its
name), it cannot be a sub-component of two or more distinct parts that are not components
of each other:

(O pq, po, p3) component_of(p py) L component_of(ps) U p, = p3 Ll compo-
nent_of(p, p3) L component_of@ py).

The above four axioms guarantee that the part structure is in the féorasi€onsisting of
one or more trees of parts.

Thecomponent_afelation relates objects lower in the component tree to the objects higher.
By the relation it is possible to traverse upward in the component tree. There is often a need
to traverse downward in the component tree, by introducing the ref@smomponent

which is defined as the inverse relatiorcomponent_of

(O pq, pp) has_component{pp,) = component_of(p py)- (1)

Parts can be made from the same model and be identical copies, and can be used as different
assemblies. Then they are treated as different instances of the same class and associated with
different ID. For example if we want to talk about two clips, Gag; andClip,, are of the

same kind, we can create a class cdlligoland say thatlip; andClip, are instances of this

same class by the following terms:

instanceOf(Clip, Clip),
instanceOf(Clip, Clip).

Parts are classified into two types, depending upocaimponent_afelationship it has with
the other parts in the hierarchy. The two types@ieitive andcomposite

» A primitive part is a part that cannot be further subdivided into components. This type of
parts exist at the lowest level of the artifact decomposition hierarchy. Therefore, a primi-
tive part cannot have sub-components.

(Op) primitive(p)= - (Op') component_of(p’, p)
Primitive parts serve as a connection between the design stage and the manufacturing
stage.

» A composite part is a composition of one or more other parts. A composite part cannot be
a leaf node in the part hierarchy; thus any part that is composite is not primitive.
(O p) composite(pF — primitive(p).

A Requirement Ontology for Engineering Design 8

Most composite parts aessembliesywhich are composed of at leasb or moreparts.
(O p) assembly(pF (C'pg, p2) component_of@p p) J component_ofgn p) LI py Z po.

Sometimes a designer may need to find oudliteet componentsf a part. A part is a direct
component of another part if there is no middle part between the two in the product hierar-
chy.

(O pq, pp) direct_component_of{pp,) = component_of(p py) U - (Op’) compo-
nent_of(p, p') U component_of(p’, .

That is,pq is a direct component @b if p; is a component gf, and there is np' such that
p; is a component gf' andp' is a component gf,.

4.2 Features

There are different kinds of features associated with a part, e.g., geometrical features, func-
tional features, assembly features, mating features, physical features, etc. [2][14]. We focus
on geometrical and functional features. Examples of geometrical features are hole, slot,
channel, groove, boss, pad, etc.; these are also taltedeaturesDesigners usually have

in mind the purposes that they want these features to serve. For example, a designer intro-
duces a hole as a feature to the arm of a desk spot lamp so that an electrical cord can run
through it. Functional features describe the functionality of a part; they define what the part
can be used for.

A part and its features are related by the predfeateire of(f, p)saying that is a feature
of partp. The following term represents the fact that a hole feature, ¢adie®, is intro-
duced in the short arm of the desk spot lamp:

feature_of(Hole3, Short_arm).

There can beomposite featurethat are composed of several sub-features. For example, a
threaded hole is a feature, which can be a component of a group of threaded holes that form
a mounting feature. The tersnbfeature_of(f f,) says that featurg is a subfeature d.

Figure 3 shows the part Short_Arm and its features.

A Requirement Ontology for Engineering Design 9

FIGURE 3. Features of Short Arm

hreaded_bar_)

ubfeature, of
G iveats (BarD

It has the followingsubfeature_oferms.

subfeature_of (Ext_threadl, Threaded_bar_1).
subfeature_of (Bar_1, Threaded_bar_1).
subfeature_of (Bar_2, Threaded_bar_2).
subfeature_of (Ext_thread2, Threaded_bar_2).

The following axiom says that a subfeature of a feature of a part is also a feature of the part:
(O f4, 5, p) subfeature_of{f fy) [l feature_of(§, p) U feature_of(f, p).

Thefeature_ofandsubfeature_ohave inverse relatiofsas_featureandhas_subfeature
defined in terms of axioms similar to (1), which we omit here.

4.3 Parameters

Parts can have parameters that define their properties such as weight, color, diameter, mate-
rial, surface finish, etc. So can features (but the parameters must be meaningful with respect
to features), e.g. a hole feature has a parameter representing the diameter of a hole. Parame-
ters are denoted by functions in the first-order logic; for instance, the colorSifdhe arm

is denoted byolor(Short_arm)

Information about a parameter such asyipe (string, integer, real number, boolean, etc.),
unit of measuremeifpound, kg, liter, etc.), and other related information need to be
recorded. This is represented by the predicates:

type(para_name, part_or_feature, type),
unit(para_name, part_or_feature, unit),

For example, type and unit information of a weight parameter of anp gadefined as:

A Requirement Ontology for Engineering Design 10

type(Weight, p, Real),
unit(Weight, p, Pound).

And for a diameter parameter of a hole, it is:

type(Diameter, Hole3, Real),
unit(Diameter, Hole3, Centimeter). (“cm” as the shorthand)

A parameter is associated with a domain defining the values that the parameter can obtain.
In our framework, we specify this by the a domain constraint discussed in a later section.

4.4 \ersion

Design is an evolutionary process during which changes occur frequently. Before reaching
its maturity each object of requirements, parts, features, and constraints may undergo many
transformations and revisions. Versions of the objects are created to record the history of the
design. We regard each version itself to be an object, which in our case is one of require-
ments, parts, features, or constraints. Version history is recorded by the preldicasst -
from(o,0")meaning that object(a version) is derived from objeat(another version). Each
version has a time at which the version is created. Thecteation_time(oxenotes the

creation time of a versiom In a subsequent repbrWe will describe the details of the

aspect of change and version management in our ontology.

5.0 Requirements

Requirements specify the properties (functional, structural, physical, etc.) of the artifact
being designed. Initial requirements often come from the customer representing his/her
wishes. These can be vague and incomplete (in some case, even inconsistent). A process in
design is then to clarify or interpret the customer’s wishes into more concrete objectives
through consultations between the designer and the customer. In this process the initial
requirements are decomposed into sub-requirements carrying greater details of the specifi-
cation of the artifact.

5.1 Decomposition of Requirements

The hierarchy of requirements is built on the relattenomposition_ofigure 4 shows the
decomposition of the weight requirement for the desk spot lamp. (Weight factor is particu-
larly important in designing equipments for aerospace usage, where a weight requirement of
a part is often decomposed into sub-requirements on the components of the part.)

1. In preparation.

A Requirement Ontology for Engineering Design 11

This relationdecomposition_ofike thecomponent_ofshould be transitive, anti-symmetric

and non-reflexive. These axioms are similar to that of part and we do not repeat them here.
The hierarchy is a single or multiple tree structure, with the roots of the trees being require-
ments originated from the customer. We can also talk at@at decompositioof a

requirement, angrimitive requirementsThe definitions are again similar to that of part,

e.g. the primitive requirements are defined as the leaf requirements in a tree of the decompo-
sition hierarchy:

(Or) primitive(r) == (Or") decomposition_of(r, r).

FIGURE 4. Weight Requirement Decomposition

R
weight(Desk_spot_lamp)<2
A
decomppsition_of
R1 R3
weight(Heavy base)<=1.3 weight(Small_head)<=0.4

2
weight(Short_arm)<0.

W

* Unit of measurement: pound

Every requirement is associated withetpressiordescribing in logical form the content of
the requirement. Leeqg_exp(r)denote the expression of requiremerrimitive require-
ments are detailed specifications on properties of the artifact. Their logical expressions often
involve some particular parameters of one or more parts. For example, the following defines
the requirement (of the name, sBy,"The weight of the desk spot lamp must be within 2.0

0.1 pound”.

req_exp(RE 1.9< weight(Desk_spot_lamg)2.1. (2)

Note in this requirement the unit of measurement for weight (whiobued agrees with

the unit of measurement information of the weight parameter. If the two are different, e.g.
the unit of measurement of the weight parametkitogram (i.e. we haveinit(\Weight,
Desk_spot_lamp,Kilogramthen pound must be converted to kilogram. Assuming that the
functionpound_to_kgloes the job, we have the requirement expression:

req_exp(RE pound_to kg(1.9 weight(Desk spot_lamg)pound_to_kg(2.1).
For conversion to/from Sl units, functions ligeund_to_kgan be used which must be part

of any engineering design ontology. In the following we assume that no disparity exists on
the unit of measurement for each parameter so that no conversion is needed.

A Requirement Ontology for Engineering Design 12

The expression of a high level requirement can be defined explicitly as a logical sentence
(similarly to the primitive requirements above) or defined in terms of lower level require-
ments. The latter usually occurs when a higher level requirement consists of several lower
level ones and it is simply an aggregation of requirements. For instance,

R: Motor safety requirement

consists of the following two sub-requirements:

R1 There should be an emergency switch to stop the running of the motor.
R2 There should be a surface cover for the motor.

Then we have
req_exp(RE req_exp(R1)req_exp(R2).

In this case, thdecomposition_afelation can be understood as a simple “consist of” rela-
tion.

The decomposition process must ensure that the meaning of the original requirement be pre-
served. Supposs,...,I, are the direct decompositions of r. Then it must be the case that

req_exp(f) ... Oreq_exp(p) U req_exp(r). 3)

That is, if the lower level requirements are satisfied then the higher level one is also. The
converse may not be true, i.e., it may not be the case that

req_exp(nd reg_exp(f) L... Oreq_exp(R). (4)

This applies to aldlerivedrequirements, a notion we will formally discuss in the next sec-
tion. Figure 4 shows an example of derived requirements, where nothing in requirement R
mentions R1, R2 and R3, yet the later three are decompositions of R. In this case, we say
that R1, R2 and R3 aderivedrequirements (derived from R). We can see that (3) holds but
(4) does not.

If indeed both (3) and (4) are true, we say that the decomposition f&épfid, i.e., the
sub-requirements give a&axact interpretatiorof the original requirement. The sub-require-
ments are also callddithful decompositionsf the original requirement. Faithful decompo-
sition is desirable, since we want the original customer’s requirements being observed as
much as possible. However, it may be difficult to achieve.

5.2 Derived and Explicit Requirements

We have seen an example of explicit and derived requirement in the last section. In this sec-
tion we will formally discuss these two notions. kegplicit(r) mean that is an explicit
requirement anderived(r)mearr is a derived requirement.

A Requirement Ontology for Engineering Design 13

A requirement igxplicitif it is given by the customer or is a faithful decomposition of a
customer’s requirement.

Then the requirements at the top of the decomposition hierarchy are explicit since the initial
requirements come from the customer:
(O0r) =(Or") decomposition_of(r, r')J explicit(r).

If a requirement is explicit then all of its ancestors are explicit:

(O, r') explicit(r) 0 decomposition_of(r, r)J explicit(r').
A requirement islerivedif it is not explicit. Every derived requirement has a parent from
which the requirement is derived:

(O r) derived(r)J (CIr") decomposition_of(r, r').

If a requirement is derived then all of its decompositions are derived:
(O r, r") derived(r)Jdecomposition_of(r', r)iJ derived(r’).

So for a requirement that has a parent (i.e. not a root of a tree in the decomposition hierar-
chy), it is explicit if its parent (single) is explicit and the decomposition from the parent to
the child(-ren) is faithful, and it is derived if its parent is derived or its parent is explicit but
the decomposition from the parent to the child(-ren) is not faithful.

Derived requirements are subjected to changes during the design process, but explicit
requirements are not (without negotiation with the customer). In the example shown in Fig-
ure 4, suppose in the design process R2 is found difficult to meet (i.e. Short arm weighs over
0.3 pound) while R1 and R3 are fine. A process is then triggered to revise R1, R2 and R3, re-
allocating the weights to that such as depicted in Figure 5.

FIGURE 5. Derived New Weight Requirement

R
weight(Desk_spot_lamp)<2
A
decomppsition_of
R1 R3

N
[6)

4=

weight(Heavy_base)<=1. weight(Small_head)<=0.4

_ R2
weight(Short_arm)<0.35

* Unit of measurement: pound

A Requirement Ontology for Engineering Design 14

5.3 Requirement Source

A requirement can also be distinguishe@=®rnalor internal, depending on where the
requirement originated.

» External requirements are specified in a design project external to the design team,
often the customer. Modification to these requirements requires higher level approval
(e.g. negotiation with the customer), and hence is not under discretion of the designer. Let
customer(adenote that the ageats the customer (the concept of customer is very gen-
eral in the sense that it can be a single person, a group of people or an organization), and
req_posted_by(r, alenote that the requirement posted by the ageat Then all exter-
nal requirements are posted by customers, i.e. agents external to the design team.

(O r) external(r)= (Oa) req_posted_by(r,) customer(a). (5)
If a requirement is external, then it is an explicit requirement:
(O r) external(r) O explicit(r). (6)

* Internal requirements are those posted by the design team members internally. These
requirements may originate as a result of the decomposition of external requirements.
They are temporary in nature and often subjected to changes during the design process.
Letdesign_team_member(d¢note that the ageats a member of the design team.

(O r) internal(r) = (Oa) req_posted_by(r, d) design_team_member(a).

It is important to know whether a requirement is external or internal. A requirement origi-
nated external to the design team need to be dealt differently than a requirement originated
internal to the team. This information is very useful when there is a violation of the require-
ments, and so some of them need to be relaxed or modified.

Thesourceof a requirement is the top level requirement from which the current requirement
is decomposed. Leeq_source({, ro) denote that, is the source af;.

The following axiom defines the source of a requirement in terms of the decomposition hier-
archy.

(O rq, rp) req_source(f, ro) = decomposition_of(r ro) [= (Jr) decomposition_of &
r.

Requirements can subsume each other. The subsume relation is:
(O rq, rp) subsumed, ry) = [req_exp(r) U req_exp(p)]. (7

Thus ifr, subsumes, and botlr, andr, are decompositions of some other requirement
thenr, can be deleted from the decomposition hierarchywathout affecting the meaning

of r. The subsume relation can be used to determine redundancy in the requirement decom-
position process.

With the subsume relation, we can give a property of faithful decompositign..lfr, are
faithful decompositions af, then we have:

A Requirement Ontology for Engineering Design 15

subsume(r, 1) C... 0 subsume(r,).

This property is easily derived from (4).

5.4 Several Classes of Requirements

Requirements can be classified into physical, structural, functional, cost, performance
requirements, (and many others), depending on the properties of the artifact that the require-
ments concern with. Below we list some examples of the requirements and their logical
descriptions.

1. Physical requirementare requirements related to “physical” properties of the artifact
such as weight, height, color, material, stiffness, power consumption, etc. In the desk spot
lamp example, we may have the requirement “The weight of a desk spot lamp must be
within 2.0+ 0.1 pound”.

req_exp(RE (O p) desk_spot_lamp(ja) 1.9< weight(p)< 2.1. (8)

Note that this logical sentence is essentially the same as (2) except that here we assume
the exact name of the artifact is unknown while in (2) it is known.

2. Structural requirementare requirements about decomposition of the artifact into sub-
parts and the topological arrangement of them, or requirements about form features of the
artifact. For example, the customer may specify that the desk spot lamp must consist of a
base, a head and an arm. This can be described as the logical sentence:

req_exp(RE (O p) desk_spot_lamp() (Cpq, pp, p3) base(p) Uhead(p) Carm(ps) O
component_of(p p) J component_of(p p) L component_of(p).

Some structural requirements may be about form features of the artifact, e.g. “the short
arm must have a hole of diameter ranging betwee.5 cm so that an electrical cord

can run through it".

req_exp(RE (0 p) arm(p)U (LIf) hole_feature(f)dfeature_of(f, p)J 0.5< diameter(fx
1.5.

3. Performance requiremengpecify the performance goals for the artifact. The following
Is an example of the performance requirement “The artifact (desk spot lamp) should be
able to illuminate more than half a square meter of room™:

req_exp(RE (0 p) desk_spot_lamp(/h) (CIf) illuminating_feature(fidfeature_of(f, p)J
illumination_area(f)= 0.5.

This says that the desk spot lamp should have a feature (called “illuminating”) associated
with a “illumination_area” whose value is greater than 0.5 (square meter).

4. Functional requirementspecify functional properties of the artifact. A designer usually
introduces functional features to the artifact in response to functional requirements. The
following is an example of the functional requirement “The base (of the desk spot lamp)
should provide support to the artifact”:

req_exp(RE (O p) base(p)! (CIf) provide_support_feature(f) feature_of(f, p).

A Requirement Ontology for Engineering Design 16

5. Cost requirementgive restriction on the cost of manufacturing the artifact. There may be
requirements on cost of designing and assembling as well. Cost requirements are some-
times important factors in design. They are reflected in choice of material (economical
vs. expensive) and introduction of features (simple vs. sophisticated).

“The total cost of manufacturing the artifact (desk spot lamp) should be no more than
$50”:
req_exp(RE (O p) desk_spot_lamp(f) cost(p)< 50.

5.5 Constraints

Constraints are statements that must be satisfied by design. Since it puts restriction on the
design, each primitive requirement is also viewed as a constraint. That is, requirements are
decomposed into constraints at the final step of the requirement decomposition process. In
addition to the constraints that decompose from requirements, there are constraints that cap-
ture various physical laws that must always be obeyed by the design. For example, if the
artifact is a geometrical object, it has to satisfy laws of geometry and topology, often
described as equations or inequalities over parameters of the artifact. The physical laws can
also be used to derive knowledge that is previously unknown to us, e.qg. if two angles in a tri-
angle structure are given then the third angle can be calculated by invoking the triangle prin-
ciple. These constraints are thus also calkdluctive rulesThe content of each constraint

is described by a logical sentence. We calbristraint expressioand denote bgon_exp(c)

for a constraint. Constraint expressions are first order logic sentences. We do not have
restriction on the formats of the sentences. Since requirements have been discussed earlier,
in the next (sub)-section we list several examples of constraints that are not (primitive)
requirements.

5.5.1 Several Examples of Constraints

One interesting group of constraints are those related to, and can be inferred from, the struc-
ture of parts. The simplest one is that the weight of a part is equal to the sum of the weights
of its (direct sub-)components. Supppse.., p, are direct components of pattThen:

weight(p) => weight(p). 9)
The cost of a part is equal to the sum of the costs of its (direct) components and the cost of
assembling the components into the p%\rt:

cost(p) =) cost(p) + assembly_cost(p).
We can also calculate the power consumption of a part from that of its components. The

relation, though, may not be as simple as that of weight or cost. In addition, there may be
several levels of power consumption, depends on the modes of the components are on, e.g.

2. There are many models of cost calculations, some of which are fairly complex, involving labor rate, recur-
ring costs, etc. Here we only demonstrate an idea of how to specify a cost model in terms of axioms.

A Requirement Ontology for Engineering Design 17

operating mode, standby mode and resting mode, which we would not discuss the detall
here. In summary, each constraint in this group captures a relationship befp}eand
a(pq),...,a(pn), wherep;,..., p, are direct components of pgranda is a property of the
parts. The relationship is generally a functieuch that

a(p) = f(a(py),-.., a(pn))-

Another group of constraints alemain constraintor parameters. Each parameter is asso-
ciated with one of the domain constraints. For example, the following is a constraint on the
parameter “weight”, which says weight of a part must be positive.

(O p) weight(p) > 0. (20)

“The base cover of the lamp must be built of the material either cast iron or cast steel”:
materal(Base_cover) = Cast_irdinmateral(Base_cover) = Cast_steel. (11)

“The color ofHeavy_basenust be one of {blue, white, black}":

color(Heavy_base) = Blugl color(Heavy_base) = White color(Heavy_base) =
Black. (12)

5.5.2 Relationship of Parametric Constraints and Parts

Parametric constraint is a special class of constraint; it is largely concerngzhrgithetric

design where an artifact is characterized by a set of parameters and a set of constraints that
limit the values of these parameters [7]. As defined, parametric constraints are constraints
whose expressions have no variables [7]. According to this definition, the constraints (11)
and (12), and that from the primitive requirement (2) are parametric constraints, while (10)
and (8) are not. In talking about the relationship of constraints and parts, we restrict our-
selves on parametric constraints, since for more general constraints the relationship is diffi-
cult to discuss due to the arbitrary form of the constraint expressions.

The relationship of constraints and parts will be brought out by the notdonadinof

parametric constraint. The domain of a (parametric) constraint is in a sense similar to the
domain of a parameter (which is the set of values that can be achieved by the parameter).
The domain can be roughly thought of as the set of objects (parameters with their parts or
features) that the constraint is concerned with. Since a constraint puts restrictions on certain
parameters, the domain can also be viewed as the set of parameters (with the parts or fea-
tures that the parameters belong to) that the constraint has restrictions on.

Let domain(cr)denote the domain of, wherecr a constraint or a requirement.

We first define the domain of a parametric constraint. The domain of a coresisaiefined
as the set of objects of the fopara(pf)that appear icon_exp(c)whereparais a parame-
ter name angf is a part or a featureikewise, for a primitive requirementthat is a para-
metric constraint, the domain is defined as the set of objects of thpdoapf)that appear
in req_exp(r)

A Requirement Ontology for Engineering Design 18

For instance, the constraint (11) has the dor{fraeteral(Base_cover){12) has the domain
{color(Heavy_base)}and (2) has the domajweight(Desk_spot_lamp)}.

The domain of a non-primitive requirement is the union of the domains of its decomposi-
tions. Supposey, ... ,r, are the direct decompositions of r. Then:

domain(r) = domain(}) O ... O domain(x,).

Note that this definition of domain is a syntactical one. It might be the case that a parameter
is in the domain of a constraint (or a requirement) but the parameter is not restricted by the
constraint (or the requirement). For example, suppose we have written the following con-
straintC with the expression:

color(Heavy_base) = Bluél color(Heavy_base Blue.

Althoughcolor(Heavy basé&) domain(C) it is easily seen that the constraint does not have
any effect on the color of Heavy base. This kind of constraints are tautologies; they have no
meaning and should be avoided to write.

With the domain definition, the ontology can answer the following question: Does a require-
ment R impose a constraint on part P? Assuming that the requirement is decomposed into
parametric constraints, this can be answered by finding out whether there is a parameter
namepara such that:

[para(P) O domain(R)]O (If) feature_of(f, P} [para(f) O domain(R)]. (13)

6.0 Example Queries

We have developed a terminology for requirements and specified axioms among the termi-
nology. We also present the terminology and axioms for parts, features, and constraints. This
forms an ontology centered on requirements in engineering design. The ontology can be
used for answering many common sense questions, by deduction using a theorem prover. In
this section we demonstrate the queries that we listed in 3.1. We will emphasize the use of
axioms in answering these queries. The ontology is implemented in Prolog in an object-ori-
ented fashion similar to ROCK knowledge base system from Carnegie Group. In this imple-
mentation, predicates and functions are expressed in some uniform format which may not be
as those appear above. For examplehute(rl, req_exp,'weight(desk_spot_-

lamp)<2’) is the implementation aéqg_exp(rl)E weight(desk_spot_lamp)<2

attribute(clip1, weight,0.02) the implementation ofveight(clipl) = 0.02 andrela-

tioin(rl1, has_decomposition,[r21,r22]) the implementation alecomposition_-

of(r21, r11)anddecomposition_of(r22, r11yVe keep this format to simulate the actual

output of the system.

* Requirement refinement:
Question 1:
Input: attribute(rl,req_exp, weight(desk_spot_lamp)<2’)

A Requirement Ontology for Engineering Design 19

attribute(rll,req_exp,'weight(heavy base)<=1.3")
attribute(r12,req_exp,'weight(short_arm)<0.3’)
attribute(r13,req_exp,'weight(samll_head)<=0.4").

Query(E): Do the decomposed requiremerts12,r13 preserve the meaning of
requirement1 ?

Query(P)?- faithful_decomposition(r1,[r11,r12,r13]).
Output: not.

Axioms: In order for a decomposition to be faithful, it must satisfy both axioms (3) and
(4). The decomposition satisfies (3) but not (4), and hence does not preserve the meaning
of the original requirement]

Question 2:
Input: attribute(rl,req_exp, weight(desk_spot_lamp)<2’)
attribute(r2,req_exp,' weight(desk_spot_lamp)<2.2")
Query(E): Is there a redundant requirement betweemndr2 ?
Query(P)?- subsume(rl,r2);subsume(r2,rl).
Output: vyes.
Axioms: Sincesubsume(r1,r2) s true by axiom (7)2 is a redundant requirement.
Question 3:
Input: customer(al2),req_posted_by(rl,a12).
Query(E): Isr1 an explicit statement of the customer?
Query(P)?- explicit(r1).

Output: yes.
Axioms: Fromcustomer(al2) andreq_posted_by(rl,a12), it is concludeckxter-
nal(rl) by axiom (5), and therefoesplicit(r1) holds by axiom (6)U

* Requirement traceability:

Question 1:

Input: relation(rl,has_decomposition,[r11,r12,r13])
relation(rll,has_decomposition,[r21,r22])
relation(r12,has_decomposition,[r23,r24])

Query(E): Does requiremerit decompose to others?

Query(P)?- decomposition_of(X,r1).

Output: X=[r11,r12,r13,r21,r22,r23,r24).

Axioms: The transitivity axiom aflecomposition_afesults in that21,r22 |, r23,r24
are also decomposed requirementsi of]

Question 2:
Input: as in Question 1.
Query(E): What is the source aft ?

A Requirement Ontology for Engineering Design 20

Query(P)?- req_source(r24,X).
Output: X=r1.

Axioms: It is concluded from the transitivity axiomadcomposition_dahatr24 is a
decomposed requirementraf. From the definition axiom @éq_sourceit is then con-
cluded that1 is the source aba .

Question 3 & 4: Simple queries involving axiomgexd_posted_by(r, agxternal(r)and
internal(r). Omitted.[

* Requirement satisfaction:
Question 1 is a special case of Question 2.

Question 2: Generally, for the question “Are two requiremBp&EndR, in conflict?”,

the system first gets tipgimitive decompositionsf R; andR; (i.e. the primitive require-
ments that are the decomposition®RkpBndRy). Supposeryy,...,RipandRyy,..., Ry are

the primitive decompositions & andR, respectively. Then the query becomes the fol-
lowing problem:

Isreq_exp(Ry) U... Ureq_exp(Ry) Ureq_exp(Ry) L... Oreq_exp(R,) consistent?
This reduces to the classical problem of checking consistency of a first-order sentence.
Input: attribute(rl,req_exp, weight(desk_spot_lamp)<2’)
attribute(r4,req_exp,'weight(desk_spot_lamp)>3’)
Query(E): Are requirements rl and r4 in conflict?
Query(P)?- conflict_requirements([r1,r4]).
Output: yes.

Axioms: The primitive decompositions of rl1 and r4 are themselves. @®igcexp(r1)]
req_exp(rd)is not consistent, the two are declared conflictihg.

Question 3: Suppodris a requirement ardy,... R, are primitive decompositions &
ThenRis satisfied iff the sentenceq_exp(R) [I... Oreg_exp(R) is true andR is vio-
lated iff the sentence is false. Example omitied.

* \ersion & Change:

Question 1 & 2: The system follows terived_fromlink to retrieve the older versions
and usereation_timepredicate to determine the latest version. Example omitted.

Question 3: The system checks if the new set of requirements is still satisfiable. Example
omitted.[]

» Relationships of requirements to parts:

These queries can be answered in parametric design. The first query has been discussed
in Section 5.5.2. The second query are of the same nature as the first one except that it is
necessary to find out all the requirements that impose a constraint on the part. The answer
to the third query is the parameter ngmaeain (13).

* Product structure:
Question 1 & 2: The system uses the axioms for predicateponent_oéndfeature_of

A Requirement Ontology for Engineering Design 21

Question 3 & 4: Similar to the questions in relationships of parts and requirements.
Question 5:

Input: relation(desk_spot_lamp, has_component,[heavy_base, short_arm,

small_head]),

relation(heavy_base,has_component,[clipl,base_cover, weight_-
disc])

instanceOf(clip1,clip)
Query(E): Where is the part with the type clip used?
Query(P)?- component_of(P,X),instanceOf(P,clip).
Output: X=heavy base; desk_spot_lamp.
Axioms: The question is to find out those parts that have a component of tickype

The transitivity axiom of theomponent_ofelation allows the system to traverse the
links in the component treél

Question 6:
Input: relation(desk_spot_lamp, has_component,[heavy _base, short_arm,
small_head]),

relation(heavy_base,has_component,[clipl,base cover, weight_-
disc])

attribute(clip1,weight,0.02)
attribute(base_cover,weight,0.1)
attribute(weight_disc,weight,0.7)
attribute(short_arm,weight,0.3)
attribute(small_head,weight,0.2)
Query(E): What are components of desk_spot_lamp that exceed 20% of the total mass?
Query(P)?- component_of(X,desk_spot_lamp),weight(X)> 0.2*weight(-
desk_spot_lamp).
Output: X=heavy_base; short_arm; weight_disc.

Axioms: The weights of heavy base and desk_spot_lamp are computed from the axiom
(9).0

The axioms in our ontology also allow integrity checking of the design data. Some of the
data provided by the engineers may be invalid. Furthermore, update to the knowledge base
may introduce inconsistency among the data and the object model for design. For example,
suppose the user tries to provide a data sude@smposition_of(R143, R143his violates

the axiom stating that thliecomposition_atfelation is non-reflexive, and therefore can be
detected easily.

A Requirement Ontology for Engineering Design 22

7.0 Conclusion

In order to make design knowledge effectively accessible across an enterprise, the knowl-
edge needs to be classified, defined and related in a well-defined terminology acceptable by
all participating engineers. In this paper we have described an ontology for requirements in
the engineering design domain. We use first-order logic to define components of the ontol-
ogy, and identify the axioms involved in the objects and their interactions with the aim of
answering common sense questions.

We discuss the issues raised by a generic requirements management process and how our
requirement ontology addresses these issues. The ontology provides communication of
requirements by defining a well-defined syntax and semantics. It addresses traceability
issues by providing explicit relations for it and allows for checking for satisfiability or con-
sistency. It provides a knowledge-base for tools that perform document creation and tools
that are responsible for managing change.

8.0 References

[1] Bilgic, T and Fox, M. S. Constraint-based retrieval of engineering design cases: context
as constraints (1996) to appear in J. Gero and F. Sudweeka(gitsal Intelligence in
Design ‘96 Kluwer Academic Publishers. http://www.ie.utoronto.ca/EIL/public/ aid96/
cbretl.html

[2] Dixon J.R., Cunningham J.J., Simmons M.K., Research in designing with features, in
Intelligent CAD I, eds. Yoshikawa H., Gossard Broc. IFIP TC 5/ WG 5.2 workshop
on intelligent CAD Elsevier, 1987, 137-148.

[3] Fiksel J., Hayes-Roth, F., Computer-aided requirements managé&uoaatirrent Engi-
neering: Research and Applicatio(t993), 1:83-92.

[4] Fox, M., Chionglo, J.F., and Fadel, F.G. “A Common Sense Model of the Enterprise”,
Proceedings of the 2nd Industrial Engineering Research Conferppcd?25-429, Nor-
cross GA: Institute for Industrial Engineers. http://www.ie.utoronto.ca/ElL/papers/
abstracts/14.html

[5] Fox, M.S., Finger, S., Gardner, E., Navin chandra, D., Safier, S.A., and Shaw, M.,
“Design Fusion: An Architecture for Concurrent Design”Kimowledge-aided Design,
Academic Press Ltd., London, UK, edited by Green, M., pp. 157-195, 1992.

[6] Fox, M.S., Salustri, F.A. “A One-Off Systems Engineering Mod&RAI Workshop on
Artificial Intelligence and Systems Engineerindgugust 1994, Seattle, Washington.
http://www.ie.utoronto.ca/ElL/papers/abstracts/33.html

[7] Gruber, T. R. and Olsen, G. R. The configuration design ontologies and the VT elevator
domain theoryinternational Journal of Human-Computer Studdigls 569-598, 1996.

[8] Gruninger, M., and Fox, M.S., (1994), “The Design and Evaluation of Ontologies for
Enterprise EngineeringWorkshop on Implemented Ontologies, European Conference
on Atrtificial Intelligence (ECAI) 1994Amsterdam, NL. http://www.ie.utoronto.ca/EIL/
public/onto_ecai94.ps

[9] Gupta, L., J. Chionglo, and M. S. Fox (1996) A Constraint Based Model of Coordina-
tion in Concurrent Design Projects, to appear irfteeeedings of WET-ICE 96ittp://

A Requirement Ontology for Engineering Design 23

www.ie.utoronto.ca/EIL/DITL/WET-ICE96/ProjectCoordination/WETICE96_Project-
Coordination.fm.html

[10]Gwizdka, J., L. Louie, and M. S. Fox (1996), EEN: A Pen-based Electronic Notebook
for Unintrusive Acquisition of Engineering Design Knowledge, to appear ifPthe
ceedings of WET-ICE’96 http://www.ie.utoronto.ca/EIL/DITL/WET-ICE96/ EEN/
EEN_Wetlce96.html

[11]Hoffman, D. A overview of concurrent engineeririgitorial Notes of 1994 Annual
Reliability and Maintainability Symposiyr@alifornia, January 1994.

[12]Kott, A. and Peasant, J. L. Representation and management of requirements: The
RAPID-WS project.Concurrent Engineering: Research and Applicatiovisl. No. 2.
Pages 93-106. June 1995.

[13]Product Data Representation and Exchange- Part 44 - Integrated Resources: Product
Structure Configuration, 1ISO 10303-44, 1992.

[14]Salomons O.W., Houten F.J.A.M. van, Kals H.J.J., Review of research in feature-based
designJournal of Manufacturing System#l.12, No. 2, 1993, 113-132.

[15]Wieringa, R. J.,Requirements Engineering: Frameworks for Understandi@hn
Wiley and Sons, New York (1996).

[16]Yen, J., Liu, X. and Teh, S. H. A fuzzy logic-based methodology for the acquisition and
analysis of imprecise requiremen@oncurrent Engineering: Research and Applica-
tions(1994) 2, 265-277. Wiley and Sons, New York.

A Requirement Ontology for Engineering Design 24

